63x(13-17x)-6x=63

Simple and best practice solution for 63x(13-17x)-6x=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 63x(13-17x)-6x=63 equation:



63x(13-17x)-6x=63
We move all terms to the left:
63x(13-17x)-6x-(63)=0
We add all the numbers together, and all the variables
63x(-17x+13)-6x-63=0
We add all the numbers together, and all the variables
-6x+63x(-17x+13)-63=0
We multiply parentheses
-1071x^2-6x+819x-63=0
We add all the numbers together, and all the variables
-1071x^2+813x-63=0
a = -1071; b = 813; c = -63;
Δ = b2-4ac
Δ = 8132-4·(-1071)·(-63)
Δ = 391077
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{391077}=\sqrt{9*43453}=\sqrt{9}*\sqrt{43453}=3\sqrt{43453}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(813)-3\sqrt{43453}}{2*-1071}=\frac{-813-3\sqrt{43453}}{-2142} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(813)+3\sqrt{43453}}{2*-1071}=\frac{-813+3\sqrt{43453}}{-2142} $

See similar equations:

| 63x(13-17x)-6x=63 | | 3/4n+1=7 | | 20=0-4y | | 3n+12=n+52 | | -7/8n=5/6 | | 2(0)=2x+5 | | 5v-13=2v+11 | | 4u-15=u+21 | | 2p+12=-6 | | 12m=–156 | | -3y=4(0)-12 | | H=16t^2+76t+23 | | 4y-y=2y+10 | | 9h-27=h+21 | | X2+5.5x-1.5=0 | | 46=10+4e | | 3y=4(0)-12 | | 13y=4(0)-12 | | x2-15x+45=0 | | 8f-38=2f+34 | | 4q+4=32 | | 20=5(0)-4y | | 0.3x0.3=0.9 | | 7h-28=2h+27 | | 6h-1=4h-3 | | )3x-7,8=4(8,2+x) | | 7v-2=54 | | L=50w=15 | | 4.8x3.6=17.28 | | 10n-15=3n+20 | | 6x2-(2x-1)(3x+2)=4 | | 8l+10=-46 |

Equations solver categories