63=(7+2x)(5+2x)

Simple and best practice solution for 63=(7+2x)(5+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 63=(7+2x)(5+2x) equation:



63=(7+2x)(5+2x)
We move all terms to the left:
63-((7+2x)(5+2x))=0
We add all the numbers together, and all the variables
-((2x+7)(2x+5))+63=0
We multiply parentheses ..
-((+4x^2+10x+14x+35))+63=0
We calculate terms in parentheses: -((+4x^2+10x+14x+35)), so:
(+4x^2+10x+14x+35)
We get rid of parentheses
4x^2+10x+14x+35
We add all the numbers together, and all the variables
4x^2+24x+35
Back to the equation:
-(4x^2+24x+35)
We get rid of parentheses
-4x^2-24x-35+63=0
We add all the numbers together, and all the variables
-4x^2-24x+28=0
a = -4; b = -24; c = +28;
Δ = b2-4ac
Δ = -242-4·(-4)·28
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1024}=32$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-32}{2*-4}=\frac{-8}{-8} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+32}{2*-4}=\frac{56}{-8} =-7 $

See similar equations:

| 63=-6(r+4)-7(3r+3) | | .9x+5.1x-7=2(2,5x-3) | | 7/3n-5=2 | | 4^2x+5=16^x+1 | | 0.4x-1.5=1.6x+2.1 | | 2x+6=-49-9xx= | | -56=6(2-3x)-8(3x-2) | | |3x+3|-11=-4 | | 2t=8-t=-3 | | 38=3(2b-6)+4(b-6) | | 2t+8-t=-333 | | x/5-1=x/5+5 | | 2-5y=1 | | 2t+8-t=-1 | | 10x^2-4x=16 | | 11=4(n+5)-5(2n+3) | | 135=24x-x*x | | 0.5(-8k+28)=8+11k | | x+(2/3x)+2x=1 | | 1/2(-8k+28)=8+11k | | (2+2)y(7+3)= | | (20x+16)-14=(18x-12) | | x+90+3x-4=180 | | 12d+275=1091 | | 2x+6=3x+9−3 | | 2z+9.75-7z=5 | | 4(4)-3y=10 | | 5+m=m+2m | | -4{2x-3}=20 | | 4+2x=-14-4x | | 6y-4(y-5)-3y=-1 | | 3x-10+4x=-2(x-4)+9 |

Equations solver categories