If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2-170x=30
We move all terms to the left:
60x^2-170x-(30)=0
a = 60; b = -170; c = -30;
Δ = b2-4ac
Δ = -1702-4·60·(-30)
Δ = 36100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36100}=190$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-170)-190}{2*60}=\frac{-20}{120} =-1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-170)+190}{2*60}=\frac{360}{120} =3 $
| X+x/2-3°=180° | | 6s-7=43 | | (13+17+19+21+x)/6=20 | | 14460=p*5 | | 211=x19 | | 36=4(u+26) | | t-2=3t/10-5 | | 25m=0.175 | | 37=b/4+45 | | 6y+4=4y-35 | | 9(u-8)=-4u+45 | | 8x=5840 | | 5(c+7)=90 | | -5y-2=2(y-8) | | 6=8j= | | -20x2-3x+2=0 | | m/4-6=2 | | -2(y+9)=-7y-33 | | 7(t+3)=49 | | 6u-4+2(2u+2)=-2(u+4) | | 222=s+20 | | 6=-2w+6(w-5) | | (x+x)+(x+2)+(x+2)=(4x+4x)+(2x+2x) | | 1=-8u+3(u+2) | | 16x-23+10x+1+62=180 | | (x+x)+(x+2)=(x+2)=(4x+4x)+(2x+2x) | | 7x+9=2x+27 | | 6(x-8)+6x=-24 | | 2(3.5n+6)=2.5n=2 | | 3^(x/2)=729 | | x+3/2x+1=4/10 | | t+1.2=3.4 |