If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-8y-36=0
a = 5; b = -8; c = -36;
Δ = b2-4ac
Δ = -82-4·5·(-36)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-28}{2*5}=\frac{-20}{10} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+28}{2*5}=\frac{36}{10} =3+3/5 $
| 6d-2=4d+4 | | 2.8y+660.2y=5y-14 | | 7=36+45-2y/3 | | 16+12x=88 | | 4=2/7p | | 5(x-5)-10=10 | | 57=(1/2)(201+1-11x) | | (a+2)-10=-5 | | (n-10)+6=12 | | 8(n-9)=8 | | 6a-7=14 | | (v-4)-8=-3 | | 3(3f+4)=30 | | 14=4x+13 | | 3d+40=139 | | 30=0.4(x) | | 36^(2x+9)=6^7^x | | 21-x=190 | | 93=-u+174 | | 24=155-x | | 12-9c=33 | | -7.1x-2.8=-6.6-9x | | x+47=20x+9 | | 12-4s=20 | | x^2-18x-16=-9x-6 | | -4x+9=9x+(-4) | | (5x-3)(4x-3)=2(4-5x)+10 | | 3.14*r^2=60.7904 | | 60.7904=r^2*3.14 | | w/3-8=30 | | 44=w/3+17 | | 25x^2+30x+4=-4 |