(5x-3)(4x-3)=2(4-5x)+10

Simple and best practice solution for (5x-3)(4x-3)=2(4-5x)+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x-3)(4x-3)=2(4-5x)+10 equation:



(5x-3)(4x-3)=2(4-5x)+10
We move all terms to the left:
(5x-3)(4x-3)-(2(4-5x)+10)=0
We add all the numbers together, and all the variables
(5x-3)(4x-3)-(2(-5x+4)+10)=0
We multiply parentheses ..
(+20x^2-15x-12x+9)-(2(-5x+4)+10)=0
We calculate terms in parentheses: -(2(-5x+4)+10), so:
2(-5x+4)+10
We multiply parentheses
-10x+8+10
We add all the numbers together, and all the variables
-10x+18
Back to the equation:
-(-10x+18)
We get rid of parentheses
20x^2-15x-12x+10x+9-18=0
We add all the numbers together, and all the variables
20x^2-17x-9=0
a = 20; b = -17; c = -9;
Δ = b2-4ac
Δ = -172-4·20·(-9)
Δ = 1009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{1009}}{2*20}=\frac{17-\sqrt{1009}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{1009}}{2*20}=\frac{17+\sqrt{1009}}{40} $

See similar equations:

| 3.14*r^2=60.7904 | | 60.7904=r^2*3.14 | | w/3-8=30 | | 44=w/3+17 | | 25x^2+30x+4=-4 | | 3x^2+14x-13=-8 | | Y=5t+45 | | S=5t+44 | | 7/11=42/v | | 6=6z | | u/5-14=22 | | 17-4x2x=13 | | -54-9r=18 | | 2^2+10r=-7 | | 6x-78=x+13 | | (x-8)(9x)=0 | | 150=180x | | 12-v=3 | | 3y=19.3 | | y=1.15(2009)-2283.55 | | 8p=p+7 | | -306=17r | | 2(2x-1354=-(2x784 | | 198+7x=1022+3x | | -32=-y/3 | | 7=-17x | | 17.6=1.15(2001)+b | | -9x+(-54)=18 | | u+14=-7 | | X2+15x+49=-7 | | 14+3x=3x | | -85=5(6n-5) |

Equations solver categories