If it's not what You are looking for type in the equation solver your own equation and let us solve it.
57=(1/2)(201+1-11x)
We move all terms to the left:
57-((1/2)(201+1-11x))=0
Domain of the equation: 2)(201+1-11x))!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-11x))+2)(201!=-1
x∈R
-((+1/2)(-11x+202))+57=0
We multiply parentheses ..
-((-11x^2+1/2*202))+57=0
We multiply all the terms by the denominator
-((-11x^2+1+57*2*202))=0
We calculate terms in parentheses: -((-11x^2+1+57*2*202)), so:We get rid of parentheses
(-11x^2+1+57*2*202)
We get rid of parentheses
-11x^2+1+57*2*202
We add all the numbers together, and all the variables
-11x^2+23029
Back to the equation:
-(-11x^2+23029)
11x^2-23029=0
a = 11; b = 0; c = -23029;
Δ = b2-4ac
Δ = 02-4·11·(-23029)
Δ = 1013276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1013276}=\sqrt{4*253319}=\sqrt{4}*\sqrt{253319}=2\sqrt{253319}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{253319}}{2*11}=\frac{0-2\sqrt{253319}}{22} =-\frac{2\sqrt{253319}}{22} =-\frac{\sqrt{253319}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{253319}}{2*11}=\frac{0+2\sqrt{253319}}{22} =\frac{2\sqrt{253319}}{22} =\frac{\sqrt{253319}}{11} $
| (a+2)-10=-5 | | (n-10)+6=12 | | 8(n-9)=8 | | 6a-7=14 | | (v-4)-8=-3 | | 3(3f+4)=30 | | 14=4x+13 | | 3d+40=139 | | 30=0.4(x) | | 36^(2x+9)=6^7^x | | 21-x=190 | | 93=-u+174 | | 24=155-x | | 12-9c=33 | | -7.1x-2.8=-6.6-9x | | x+47=20x+9 | | 12-4s=20 | | x^2-18x-16=-9x-6 | | -4x+9=9x+(-4) | | (5x-3)(4x-3)=2(4-5x)+10 | | 3.14*r^2=60.7904 | | 60.7904=r^2*3.14 | | w/3-8=30 | | 44=w/3+17 | | 25x^2+30x+4=-4 | | 3x^2+14x-13=-8 | | Y=5t+45 | | S=5t+44 | | 7/11=42/v | | 6=6z | | u/5-14=22 | | 17-4x2x=13 |