If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-9=0
a = 5; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·5·(-9)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*5}=\frac{0-6\sqrt{5}}{10} =-\frac{6\sqrt{5}}{10} =-\frac{3\sqrt{5}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*5}=\frac{0+6\sqrt{5}}{10} =\frac{6\sqrt{5}}{10} =\frac{3\sqrt{5}}{5} $
| n+52=87 | | c÷3=18 | | 7/8x+1=2-1/4x | | x/9-11=2 | | x/4+x/2=90 | | −(−6)+18−10x=−6x | | 3.25n=-29.25 | | 246-n=232 | | 50-4n=18 | | 5+x=(24-x)(19-2x) | | 3/20=x/120 | | 35x2-63x+28=0 | | 5+x=(24−x)−(19−2x) | | 5y2-14y+8=0 | | 6(1+4n)-(-11-n)=42 | | 5n-3/4(8n-4)=-1 | | x+13=4x+2 | | 82=3x+2 | | 5/6n+4=1/6n-2 | | 3x-6=-2x-16 | | 53+80+x=180 | | 308x=1520 | | 50+62+x+53+80+x=180 | | 120+(7x)+90+(6x)+(5x-4)+(8x-6)+120=720 | | -36-n/2=14 | | Y+7=4/9(x-18) | | M2-8m-9=0 | | a) | | j.j-18=43 | | 62=n-12 | | 6x+24=4 | | 4.3+1.1n=21 |