If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5+x=(24-x)(19-2x)
We move all terms to the left:
5+x-((24-x)(19-2x))=0
We add all the numbers together, and all the variables
x-((-1x+24)(-2x+19))+5=0
We multiply parentheses ..
-((+2x^2-19x-48x+456))+x+5=0
We calculate terms in parentheses: -((+2x^2-19x-48x+456)), so:We add all the numbers together, and all the variables
(+2x^2-19x-48x+456)
We get rid of parentheses
2x^2-19x-48x+456
We add all the numbers together, and all the variables
2x^2-67x+456
Back to the equation:
-(2x^2-67x+456)
x-(2x^2-67x+456)+5=0
We get rid of parentheses
-2x^2+x+67x-456+5=0
We add all the numbers together, and all the variables
-2x^2+68x-451=0
a = -2; b = 68; c = -451;
Δ = b2-4ac
Δ = 682-4·(-2)·(-451)
Δ = 1016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1016}=\sqrt{4*254}=\sqrt{4}*\sqrt{254}=2\sqrt{254}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-2\sqrt{254}}{2*-2}=\frac{-68-2\sqrt{254}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+2\sqrt{254}}{2*-2}=\frac{-68+2\sqrt{254}}{-4} $
| 3/20=x/120 | | 35x2-63x+28=0 | | 5+x=(24−x)−(19−2x) | | 5y2-14y+8=0 | | 6(1+4n)-(-11-n)=42 | | 5n-3/4(8n-4)=-1 | | x+13=4x+2 | | 82=3x+2 | | 5/6n+4=1/6n-2 | | 3x-6=-2x-16 | | 53+80+x=180 | | 308x=1520 | | 50+62+x+53+80+x=180 | | 120+(7x)+90+(6x)+(5x-4)+(8x-6)+120=720 | | -36-n/2=14 | | Y+7=4/9(x-18) | | M2-8m-9=0 | | a) | | j.j-18=43 | | 62=n-12 | | 6x+24=4 | | 4.3+1.1n=21 | | x3–12x2+36x=0 | | 15x+4=6x-86 | | 7(20.5+y)=70 | | 201/5d=23 | | 4+3(x-1)=-4(x+3) | | ?x3/14=3/2 | | x-35=3(x+5) | | 5w+3+2w–28=360 | | 2w–28=5w+3 | | s+20=3s+18 |