If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35x=0
a = 5; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·5·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*5}=\frac{-70}{10} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*5}=\frac{0}{10} =0 $
| 23-x=14x+2x | | -2.6x=-78 | | -8x+8=-2x+32 | | 4x2+20=0 | | x–39=7 | | 3x-35=-5x+21 | | 3x2-7x+2=0 | | s/1.5=0 | | |x^2+4|=29 | | (2x−9)+(27−4x)=180 | | 2x−9+27−4x=180 | | 4+8t=12 | | (-2+6i)+(4-i)=0 | | x2+2x–35=0 | | 11(x-3)=5x+15 | | 4.8x+52=3.2-20 | | 4x+36+6−x=90 | | (4x+36)+(6−x)=90 | | 0=-9.8t^2+120t-400 | | 2m^2+m=6 | | 3/4(n)+16=2-1/8(n) | | 3(5x+9)=4(6x+10) | | 48=4c-4(5-4c) | | 3c+-1/2(c-14)=2 | | 7(x–4)=84 | | 2y-3(y+1)=-(5y+3) | | 2/18x-15=15 | | 5(-t)-(1-3t)=6 | | -6(7x+10)=-3(14x+20) | | 8(-n+7)=2n+6 | | 42x+1=50x-15 | | X+80+x+40+70=180 |