If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+25x=0.
a = 5; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·5·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*5}=\frac{0}{10} =0 $
| 11=a/7 | | 13+6c=29 | | 2x+5=2x–3 | | 8-2(x+12)=-4-11x | | (7h3+8h)−(9h3+h2−2h)=0 | | (−t3+5t2−6t)+(8t2−8t)=0 | | -25b=-2.5 | | b-23.46=66.19 | | 25=3a+0 | | x-0.2x=19 | | 5x+6x-9x=6+6 | | (2x+3)/5=x+6 | | 11/15-1/3=n | | -4.91x^2+20X+19=30 | | 5x+17=59 | | 2y-51=11 | | 17n=15 | | 17n=5 | | 2(d/3+6)=20 | | 6x+6=7x+5 | | 124+352—12x8÷4+49÷7—5=N | | X+2x+4=x+3 | | 3x-6x+2=x+2 | | X+1x+5=x+3 | | 6x–14=34 | | 4x+7=7x-47 | | 1-x÷1.2=16.6 | | .50m+30=130 | | X(x-6)=4x-21 | | 50-8r=4r-10 | | 2.9x^2-6x-7.5=0 | | 5c-4(c-7)=3+2c |