If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+15=140
We move all terms to the left:
5x^2+15-(140)=0
We add all the numbers together, and all the variables
5x^2-125=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $
| -(6y+1)-(5y-2)=-3 | | (2x+6)/2=13 | | (12y+9)+(15y-6)=180 | | 2/5=y/10 | | 0.4(x-2)=4.8 | | 0.15x+22.5=34 | | 4(r-7)+2=5(r+3)-22 | | 3=20/5+b | | 0.15x+25=31 | | 9m+-13m+-8=-4 | | 8+2w=1-2w+5 | | 5x+0.4=2.8-1.2x | | x-(-7.4)=3.2 | | 16-12g=-12-16g | | 160(3x)=195(2x) | | 5k+20=9k+4 | | -2f-9=f | | -2m+11m-16m-7=-18 | | 7(3y-2)=-26 | | (3x)160=(2x)195 | | -3b+10-10b=-10-9b | | -232=40+24a | | 12x^2+14x+24=0 | | -12h+39=-3h=16 | | 11y-7y-6=64.36 | | 9j−14+6j=16+18j | | 22=-4+8m | | -r/4=1/6 | | 5+8d=10d+9 | | 5-9d=-7-7d | | 6x-24=58=4x | | 24=-12x^2-14x |