5x(x-6)+8-2x=x+2(x-11)

Simple and best practice solution for 5x(x-6)+8-2x=x+2(x-11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x-6)+8-2x=x+2(x-11) equation:



5x(x-6)+8-2x=x+2(x-11)
We move all terms to the left:
5x(x-6)+8-2x-(x+2(x-11))=0
We add all the numbers together, and all the variables
-2x+5x(x-6)-(x+2(x-11))+8=0
We multiply parentheses
5x^2-2x-30x-(x+2(x-11))+8=0
We calculate terms in parentheses: -(x+2(x-11)), so:
x+2(x-11)
We multiply parentheses
x+2x-22
We add all the numbers together, and all the variables
3x-22
Back to the equation:
-(3x-22)
We add all the numbers together, and all the variables
5x^2-32x-(3x-22)+8=0
We get rid of parentheses
5x^2-32x-3x+22+8=0
We add all the numbers together, and all the variables
5x^2-35x+30=0
a = 5; b = -35; c = +30;
Δ = b2-4ac
Δ = -352-4·5·30
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-25}{2*5}=\frac{10}{10} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+25}{2*5}=\frac{60}{10} =6 $

See similar equations:

| 5(x-3)=7(x=4)=73 | | 7x-4(x+6)=4x-3 | | 150000=x-0.06x | | 320=10*8*l | | 3t+2t=18 | | -5(8m-8)-8m=-200 | | (3x+3)+(42x+42)=6 | | 1/2x+32=74 | | 12+3x+6=67 | | 19x-1=16x+5 | | -4(-6+6r)=120 | | k=–20 | | 9x^2+2x-4=0 | | 10x-73=x+8 | | 9x-6=55 | | (0.8+2x)^2=0.67(-1.4x+x^2) | | X=-15+2y | | (3x–51)/9=(–2x+8)/4 | | (8(24)-61)+(3y+1)=180 | | 3y/4-5y/7=6 | | (x+20)+x+(x-8)=180 | | 4d+20=36 | | 12-2e=18 | | 9x2+38x+8=0 | | 2410=π144h | | 6x-5=3x-41 | | 6t+24=28 | | -8x+14=32-4x | | 100-40x=50x-10 | | 11x-186=3x-10 | | 10x^2+x+-10=-2x+8 | | 5x=6−x |

Equations solver categories