If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2-20m=0
a = 5; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·5·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*5}=\frac{0}{10} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*5}=\frac{40}{10} =4 $
| x+20=75+50 | | 3(j−82)=24 | | 2x+14=5x-3 | | 2x+8+6x=4(2x-3) | | 14=2n−6 | | g−169=7 | | 124-4x=92 | | -17x-3=14 | | 18=3y+-11 | | -5=-2+v/2 | | n-2+n=-7+3n | | 81=8n+17 | | -5x+10x=25 | | 3w*w=18 | | 60=4(x-1)+15+3x | | 10x-4x=x=35 | | 5+-2x=13 | | 3(-2y+1)=-6y-3 | | -83=-6(2x+3)+7 | | 62=4x+-21 | | j/9=10 | | 4xx=26.7 | | 2/3c+10=6 | | 4x=9=17 | | 8(y-5)=2(10+4y) | | m=12;(0,-5) | | 252^n+1=625 | | u-49=22 | | C=200w+400 | | 26=r3 | | 7=0.3y+4 | | 5x+7=96 |