52=(x+1)2+x2

Simple and best practice solution for 52=(x+1)2+x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 52=(x+1)2+x2 equation:



52=(x+1)2+x2
We move all terms to the left:
52-((x+1)2+x2)=0
We calculate terms in parentheses: -((x+1)2+x2), so:
(x+1)2+x2
We add all the numbers together, and all the variables
x^2+(x+1)2
We multiply parentheses
x^2+2x+2
Back to the equation:
-(x^2+2x+2)
We get rid of parentheses
-x^2-2x-2+52=0
We add all the numbers together, and all the variables
-1x^2-2x+50=0
a = -1; b = -2; c = +50;
Δ = b2-4ac
Δ = -22-4·(-1)·50
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{51}}{2*-1}=\frac{2-2\sqrt{51}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{51}}{2*-1}=\frac{2+2\sqrt{51}}{-2} $

See similar equations:

| 140=500-20p | | X-10=4z | | m(3m-8)=16 | | m(3m−8)=16 | | (x-87)-27=36 | | 5/d+2+d/5=d+5/5 | | X=2z-8 | | 3x-2+6x=3(3x+5) | | a=500-(20)(23) | | 2(6x+4)+6+2x=3(4x+3)+1 | | (x+4)-x=10 | | 6m^2=5+13m | | 5x-6=-18 | | -x-4=17 | | Y+2=6z | | 2x+3x-8=8(2+2) | | 2(x-4)=2x-30/3 | | -132n(n+1=0 | | 2.75x+3.5=-1.25x+11.5 | | 74=-7p-3 | | t-21=12 | | 1/2n(n+1)=66 | | -7/6y=21 | | .5(4x+12)=3(x+4) | | 1.5t^2-26.8t-16100=0 | | 2^(x2+5x-7)=1 | | 7/b=10/5 | | 3(u+5)-7u=19 | | 6x^2=550 | | y=900(1)+39,750 | | 7x=1-6x^2+8 | | 1.5t^2-26.8-16100=0 |

Equations solver categories