If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5/6k+-2/7=-2-6/7k
We move all terms to the left:
5/6k+-2/7-(-2-6/7k)=0
Domain of the equation: 6k!=0
k!=0/6
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
5/6k-(-6/7k-2)+-2/7=0
We add all the numbers together, and all the variables
5/6k-(-6/7k-2)-2/7=0
We get rid of parentheses
5/6k+6/7k+2-2/7=0
We calculate fractions
1715k/2058k^2+36k/2058k^2+(-12k)/2058k^2+2=0
We multiply all the terms by the denominator
1715k+36k+(-12k)+2*2058k^2=0
We add all the numbers together, and all the variables
1751k+(-12k)+2*2058k^2=0
Wy multiply elements
4116k^2+1751k+(-12k)=0
We get rid of parentheses
4116k^2+1751k-12k=0
We add all the numbers together, and all the variables
4116k^2+1739k=0
a = 4116; b = 1739; c = 0;
Δ = b2-4ac
Δ = 17392-4·4116·0
Δ = 3024121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3024121}=1739$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1739)-1739}{2*4116}=\frac{-3478}{8232} =-1739/4116 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1739)+1739}{2*4116}=\frac{0}{8232} =0 $
| -6a(4a)-2=214 | | 4(b+3)=40 | | -3b/4+13=4 | | 6m/8-6=-12 | | 3/10(3-2x)=3 | | 9∙(11x–5)+7∙(4x+8)=39 | | 9(11x–5)+7(4x+8)=392 | | 4/x+3=6/5 | | 1.6=4.9t2 | | 180=5x-5+11x-7 | | 2x-x/2=96 | | 6(x+1)-2x-1=(x+15)(x+16) | | 9∙(11x–5)+7∙(4x+8)=392 | | 20)9∙(11x–5)+7∙(4x+8)=392 | | 5(a+4)=15 | | 14x–5=2 | | 6x+5=12×+10 | | 290=-16x^2+0 | | 9m−14=10m+16 | | 4-7y=22-y | | 6x+5x+4x+1=12x+1 | | 56x-14=5 | | (5x-4)+(3x+4)+7x=180 | | |4x-21|=69 | | 3y/1-2/9=43/9 | | 7x+12=-156 | | 75-(3x+5)=3(x+7)+x | | 5x−17=4x+20 | | -9/4x=-5/8 | | 180=s+2s/7 | | 7y-8=11y | | 6/5+4/5x=44/15+7/3x+1/3 |