If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.6=4.9t^2
We move all terms to the left:
1.6-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+1.6=0
a = -4.9; b = 0; c = +1.6;
Δ = b2-4ac
Δ = 02-4·(-4.9)·1.6
Δ = 31.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{31.36}}{2*-4.9}=\frac{0-\sqrt{31.36}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{31.36}}{2*-4.9}=\frac{0+\sqrt{31.36}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 180=5x-5+11x-7 | | 2x-x/2=96 | | 6(x+1)-2x-1=(x+15)(x+16) | | 9∙(11x–5)+7∙(4x+8)=392 | | 20)9∙(11x–5)+7∙(4x+8)=392 | | 5(a+4)=15 | | 14x–5=2 | | 6x+5=12×+10 | | 290=-16x^2+0 | | 9m−14=10m+16 | | 4-7y=22-y | | 6x+5x+4x+1=12x+1 | | 56x-14=5 | | (5x-4)+(3x+4)+7x=180 | | |4x-21|=69 | | 3y/1-2/9=43/9 | | 7x+12=-156 | | 75-(3x+5)=3(x+7)+x | | 5x−17=4x+20 | | -9/4x=-5/8 | | 180=s+2s/7 | | 7y-8=11y | | 6/5+4/5x=44/15+7/3x+1/3 | | 16=-3+6(s-9) | | 8x÷4=20 | | -32=5v-6v | | 2(3x-1)-10=3x-6 | | 4(9y-7)=-25 | | 6/u+7=4/u+7+2 | | -3c-4+7=30 | | -5r-6r=35 | | 5(2x-2)=4x-22 |