5+2/8x=-x+20

Simple and best practice solution for 5+2/8x=-x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+2/8x=-x+20 equation:



5+2/8x=-x+20
We move all terms to the left:
5+2/8x-(-x+20)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
2/8x-(-1x+20)+5=0
We get rid of parentheses
2/8x+1x-20+5=0
We multiply all the terms by the denominator
1x*8x-20*8x+5*8x+2=0
Wy multiply elements
8x^2-160x+40x+2=0
We add all the numbers together, and all the variables
8x^2-120x+2=0
a = 8; b = -120; c = +2;
Δ = b2-4ac
Δ = -1202-4·8·2
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-32\sqrt{14}}{2*8}=\frac{120-32\sqrt{14}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+32\sqrt{14}}{2*8}=\frac{120+32\sqrt{14}}{16} $

See similar equations:

| -5(3y-3)-y=-3(y-5) | | 3y+10(11y+18)=1423 | | P=-c | | 100-7x=37 | | 9P-4p=1 | | 2(y-5)-9=-5(-4y+1)-6y | | 4x-9=3.5x-8 | | r/4r-1=7 | | 4(u+4)=-2u-20 | | 6(z-3)-3(5z-2)=87 | | 11w+9-7w=15 | | 25x+.05=40x+.03 | | 444=18n+45 | | (8x-17)/7=-7 | | 16x-8=21=x | | 3x+39-15=4x-8-9 | | 5x/5=-1.4/5 | | 23627368732548x=-1235172 | | -30=3(x-4)+6x | | 18a+6-18=6a | | -25p-5(5-6p)=3(p-2)-17 | | 14040-5x=12500+20x | | -4x+20=30 | | 6x+4+x=5x+4 | | 14b=16(b×12) | | -2/3=4v=4/2v=14 | | 3(y+3)-7y=29 | | 56x=-100 | | 0.9+3.1w=11.1-4.4w+7 | | 4x(2+2)=-6 | | 2x+21÷3=5 | | |x|+9=0 |

Equations solver categories