5*3x-1=1/125.2x+3

Simple and best practice solution for 5*3x-1=1/125.2x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5*3x-1=1/125.2x+3 equation:



5*3x-1=1/125.2x+3
We move all terms to the left:
5*3x-1-(1/125.2x+3)=0
Domain of the equation: 125.2x+3)!=0
x∈R
Wy multiply elements
15x-(1/125.2x+3)-1=0
We get rid of parentheses
15x-1/125.2x-3-1=0
We multiply all the terms by the denominator
15x*125.2x-3*125.2x-1*125.2x-1=0
Wy multiply elements
1875x^2-375x-125x-1=0
We add all the numbers together, and all the variables
1875x^2-500x-1=0
a = 1875; b = -500; c = -1;
Δ = b2-4ac
Δ = -5002-4·1875·(-1)
Δ = 257500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{257500}=\sqrt{2500*103}=\sqrt{2500}*\sqrt{103}=50\sqrt{103}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500)-50\sqrt{103}}{2*1875}=\frac{500-50\sqrt{103}}{3750} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500)+50\sqrt{103}}{2*1875}=\frac{500+50\sqrt{103}}{3750} $

See similar equations:

| 5^3x-1=1/125.2x+3 | | 1/5-4+x=25*x+3 | | 1/5-4+x=25x+3 | | 64^(3x-1)=8^(4x) | | 7-5x-3=49 | | 21/3t-22=4 | | -5(1-5x)+5(-8x-2)=-4+8x | | 3n(5n+10)=0 | | B=3/2(j-31) | | 5/2v-7=-5/6v-7/3 | | 7v^2-4=-8 | | |6x2+5|=17 | | w^2+5w-1800=0 | | 5-4n/2=8 | | 8-3x=15+5x | | P(x=5)=10C5(.64)^5(.36)^5 | | 82k=23k+25k | | 1/7x-1/7=1/7 | | -1/7x-1/7=1/7 | | x-(5/100)x=835200 | | x-6+4=16 | | 16k=10k+6k | | -6+9x=3/5 | | 8x+2+7=-15 | | -6(v+4)+4v+6=7v+12 | | 2(3+5x)=4x+18 | | -5(v+3)+2v+6=8v+6 | | 117=-39t | | 2x=10( | | 37+x+82=180 | | 3m+2m(m+2)=20-(2m-5) | | 7-3a=13 |

Equations solver categories