3m+2m(m+2)=20-(2m-5)

Simple and best practice solution for 3m+2m(m+2)=20-(2m-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3m+2m(m+2)=20-(2m-5) equation:



3m+2m(m+2)=20-(2m-5)
We move all terms to the left:
3m+2m(m+2)-(20-(2m-5))=0
We multiply parentheses
2m^2+3m+4m-(20-(2m-5))=0
We calculate terms in parentheses: -(20-(2m-5)), so:
20-(2m-5)
determiningTheFunctionDomain -(2m-5)+20
We get rid of parentheses
-2m+5+20
We add all the numbers together, and all the variables
-2m+25
Back to the equation:
-(-2m+25)
We add all the numbers together, and all the variables
2m^2+7m-(-2m+25)=0
We get rid of parentheses
2m^2+7m+2m-25=0
We add all the numbers together, and all the variables
2m^2+9m-25=0
a = 2; b = 9; c = -25;
Δ = b2-4ac
Δ = 92-4·2·(-25)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{281}}{2*2}=\frac{-9-\sqrt{281}}{4} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{281}}{2*2}=\frac{-9+\sqrt{281}}{4} $

See similar equations:

| 7-3a=13 | | -5=x/4-9 | | 4(-9+n)=-20 | | 13=3a-7 | | 7g-5=2g+7 | | -6(7x+6)=174 | | 3d+4=2d-8 | | 104=-8-8(7-7x) | | 4-(x-3)=2x+4 | | |19-2x|=15 | | 9x+8+7(x-6)=5 | | 6^7y=4 | | 2c+10=-c3 | | 5/8y-1/4y+1/12y=1/4 | | 6x-6000=5000 | | x+8=7(x-6)+5 | | 2k(2k-3)=45 | | 9p+2000+6p-2500=1000 | | 13/20x+4/3-1/4x=11/16 | | 5+2x(x-3)=2x^2 | | 2000+9p=6p-2500 | | 4(3-a)+a=22+2a | | 2(k+4)=5(k-3)+5 | | x*1.15=40 | | 9(3x+1=45 | | 8x+9=5x+45 | | ×/3x^2+20×-7=0 | | -8/7-1/5u=-3/2 | | -x/3=9= | | 2x-11=4x+13 | | 12=4|w+9|−8 | | 15.8=4x+1 |

Equations solver categories