If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(x+6)-15(2-x)/3x-1=10
We move all terms to the left:
5(x+6)-15(2-x)/3x-1-(10)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
5(x+6)-15(-1x+2)/3x-1-10=0
We add all the numbers together, and all the variables
5(x+6)-15(-1x+2)/3x-11=0
We multiply parentheses
5x-15(-1x+2)/3x+30-11=0
We multiply all the terms by the denominator
5x*3x-15(-1x+2)+30*3x-11*3x=0
We multiply parentheses
5x*3x+15x+30*3x-11*3x-30=0
Wy multiply elements
15x^2+15x+90x-33x-30=0
We add all the numbers together, and all the variables
15x^2+72x-30=0
a = 15; b = 72; c = -30;
Δ = b2-4ac
Δ = 722-4·15·(-30)
Δ = 6984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6984}=\sqrt{36*194}=\sqrt{36}*\sqrt{194}=6\sqrt{194}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-6\sqrt{194}}{2*15}=\frac{-72-6\sqrt{194}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+6\sqrt{194}}{2*15}=\frac{-72+6\sqrt{194}}{30} $
| 6x^2-4x+3=4x^2+3x-2 | | -(w-6)=12 | | 1(w-6)=12 | | 8x^2-18=4x | | (t+4)(-2)=18 | | 4×(x/4)=(12/18)×4 | | (x+4/2)+3(1+2x/4)=0 | | -1(b+11)=-6 | | (7a-3/6)-(2a-3/4)=5/4 | | 3(d-2)=24 | | -24+20=b | | -9+3x=4x-11 | | 0.2(2a-1)-0.5(3a-1)=0.4 | | 58-6s=-16 | | 5x+17(2+3x)=16(1+4x)= | | -2x+6=-6+x | | 3x+5=30-1/2x | | -7f+2+9=-28 | | 7+4x=2x+79 | | 29+10x=529 | | 4k+8+6=-21 | | 2v+8v=15 | | 0.05x+0.25x-0.2=x-0.9 | | 5c-7-6=17 | | 9x+3x=6x+42 | | -5x-2x=19 | | 49=20+b | | -5d+4d=16 | | 5x+10+x=46 | | -7h-5-3=33 | | 1/2x^2-√11x+1=0 | | 49=10(2)+b |