If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(11x^2)=155
We move all terms to the left:
5(11x^2)-(155)=0
a = 511; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·511·(-155)
Δ = 316820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316820}=\sqrt{4*79205}=\sqrt{4}*\sqrt{79205}=2\sqrt{79205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{79205}}{2*511}=\frac{0-2\sqrt{79205}}{1022} =-\frac{2\sqrt{79205}}{1022} =-\frac{\sqrt{79205}}{511} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{79205}}{2*511}=\frac{0+2\sqrt{79205}}{1022} =\frac{2\sqrt{79205}}{1022} =\frac{\sqrt{79205}}{511} $
| x=8+5/6 | | 5x^2+x-40=0 | | 6y+2+3y+7=13y-23 | | 3m+2=-5m+1 | | 4x^2+8=25 | | 3x+5/4=x-7/3 | | 14=b+-75 | | 5c^2+52c-96=0 | | r-37=41 | | 3x+20-6x+1=3 | | (7y+4)-(3+6y)=12 | | 2n-(5-n)=13+2n | | c+11=91 | | x+4=-2+13 | | m+8.6=16 | | (5y-50)=(4y-10) | | 6(9-x)=1 | | 3(5y+3)=29 | | 2x+3=-2x-5 | | 2n+24+3n+11=180 | | 8-2(x+1)=7(x-3) | | 7x+69=12x+2 | | 1/4x-1/5=-3/10 | | 4u^2+12+5=0 | | 16y(y)=102 | | 6x+2=4x−96x+2=4x-9 | | x/1.25+x=323.93 | | 8(-n-18)+37=-8(-4-8)-11 | | X^3+11x^2-13x-34=0 | | 3+5a=-9-a | | x+29=5x+65 | | 3/4x-12=1/2x—6 |