If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5(1+-5x)+5(-8x+-2)=-4x+-8x(1*5+-5x*5)+5(-8x+-2)=-4x+-8x(5+-25x)+5(-8x+-2)=-4x+-8x
We move all terms to the left:
5(1+-5x)+5(-8x+-2)-(-4x+-8x(1*5+-5x*5)+5(-8x+-2))=0
We add all the numbers together, and all the variables
5(-5x)+5(-8x-2)-(-4x+-8x(-5x*5)+5(-8x-2))=0
We use the square of the difference formula
5(-5x)+5(-8x-2)-(-4x-8x(-5x*5)+5(-8x-2))=0
We multiply parentheses
-25x-40x-(-4x-8x(-5x*5)+5(-8x-2))-10=0
We calculate terms in parentheses: -(-4x-8x(-5x*5)+5(-8x-2)), so:We add all the numbers together, and all the variables
-4x-8x(-5x*5)+5(-8x-2)
We multiply parentheses
200x^2-4x-40x-10
We add all the numbers together, and all the variables
200x^2-44x-10
Back to the equation:
-(200x^2-44x-10)
-65x-(200x^2-44x-10)-10=0
We get rid of parentheses
-200x^2-65x+44x+10-10=0
We add all the numbers together, and all the variables
-200x^2-21x=0
a = -200; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·(-200)·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*-200}=\frac{0}{-400} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*-200}=\frac{42}{-400} =-21/200 $
| 5p+6=-4p-12 | | 28(x+5)=-3(8x+40) | | -8+18=-6c+36 | | 10.8v+11.35=10.1v-17.36+18.63 | | 119=7(2x-3) | | 5+4q=3q | | 12=d-5 | | 1+2(3x-7)=-187 | | -5(x-6)=-3(x+7)+7 | | 9n+8+17=8 | | 10-6x=50-4x | | -7+6z=7z | | 1x+1=1x+9 | | 9=u+4/u+12 | | 9n+8+17=9 | | Y-0.1-0.005xx=6 | | 9(m+5)–3(m–2)=8m+31 | | 54x+1=36x+55 | | 2x-23+5x+8=180 | | 10x+11=152 | | 16+10+(x-10)=5+(x-5)+(x-4) | | 9x-27=96 | | 10-(6x-13)=175 | | -4j+95=9j-9 | | 9(x-3)=12•8 | | 70=66+n/5 | | 4(3-x)+8(x+1)=32 | | 6p+6=3(2p+2) | | |t+7|=5 | | 6u+5=8u+10 | | 11x-10=-5x+24-x | | 3(4x+2)=20x-9x+13 |