4x=8(2x-3)4x-16x-3

Simple and best practice solution for 4x=8(2x-3)4x-16x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x=8(2x-3)4x-16x-3 equation:



4x=8(2x-3)4x-16x-3
We move all terms to the left:
4x-(8(2x-3)4x-16x-3)=0
We calculate terms in parentheses: -(8(2x-3)4x-16x-3), so:
8(2x-3)4x-16x-3
We add all the numbers together, and all the variables
-16x+8(2x-3)4x-3
We multiply parentheses
64x^2-16x-96x-3
We add all the numbers together, and all the variables
64x^2-112x-3
Back to the equation:
-(64x^2-112x-3)
We get rid of parentheses
-64x^2+4x+112x+3=0
We add all the numbers together, and all the variables
-64x^2+116x+3=0
a = -64; b = 116; c = +3;
Δ = b2-4ac
Δ = 1162-4·(-64)·3
Δ = 14224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14224}=\sqrt{16*889}=\sqrt{16}*\sqrt{889}=4\sqrt{889}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-4\sqrt{889}}{2*-64}=\frac{-116-4\sqrt{889}}{-128} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+4\sqrt{889}}{2*-64}=\frac{-116+4\sqrt{889}}{-128} $

See similar equations:

| k·7=34 | | 8x-9=33 | | -2j+10=3j | | -25=-5(h+12) | | -22=t-10 | | -4(3x–2)=20 | | 3+3(4-x)=12-2x | | 26=15x-26 | | 7-9x-15+12x=3x-8 | | -p-8=-2 | | -q=q+10 | | 5+2=c-9 | | 7v/2=14 | | 38=x/25 | | 12m-5m=14 | | 4=1.5t+2 | | 9/x=18/32 | | -1+9n=-9+n | | 14a=72 | | -5(m-9)=7(4-m)-1 | | 3f+2f+6=21 | | 130=-10w | | 2(y+5)=3(y+8) | | 2y2+5y-12=0 | | 10÷a=-3 | | 4(1+4x)=9x+40-2x | | 3x-4=3x- | | 3q−q=16 | | 150-6x=190-10x | | x-2x+6=1 | | 2(5x2-2)=8x | | -10m=-7-10m |

Equations solver categories