If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+5y-12=0
a = 2; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·2·(-12)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*2}=\frac{-16}{4} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*2}=\frac{6}{4} =1+1/2 $
| 10÷a=-3 | | 4(1+4x)=9x+40-2x | | 3x-4=3x- | | 3q−q=16 | | 150-6x=190-10x | | x-2x+6=1 | | 2(5x2-2)=8x | | -10m=-7-10m | | -4-9s=-5-9s | | 3(7+2x)=30+(7x-1) | | m-25=100 | | x+7=x^2+6x+11 | | 140+y+(2y-50)=180 | | {x}{3}-3={x}{9}+3 | | 9p-1=-1+p | | 5x-14=5x- | | 5x-35=-15x-15 | | 3b^2=4+11b | | 18x²+10x=-11x+4 | | X-3(2-3x)=2(5x+3 | | 1x-1=-4+3x | | -4g=-2-4g | | 7c+49=7(1+4c) | | 6w×w=216 | | x2+65=18x | | y-2=80 | | 55x=92 | | p/6-9=-6 | | -9w=-9w-8 | | 4/x+2-2/9=0 | | 9x+5=9x+ | | a×8=72 |