If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=2
We move all terms to the left:
4x^2-(2)=0
a = 4; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·4·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*4}=\frac{0-4\sqrt{2}}{8} =-\frac{4\sqrt{2}}{8} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*4}=\frac{0+4\sqrt{2}}{8} =\frac{4\sqrt{2}}{8} =\frac{\sqrt{2}}{2} $
| 0.5x+0.2=0.15x-10.5 | | 5x-8+2x=7+7x-14 | | 108=-9+9r | | 9x-(8x+2)=7x-38 | | -151=-6(3b+6)-7 | | 4x+3x2=38 | | 7x^2+35x=-21 | | 1+7n-7n=0 | | (2x+2)(3x-6)=0 | | 4x–5=6x+20 | | -x=137 | | 5=j+28 | | 56÷x=7 | | 3x²=600 | | 26+q=13 | | x/5x+10=45 | | 137=-7x-4x+5 | | 56=2(x+3) | | -7x−3x+2=−8x−8 | | 3(2x-2)=2x+6 | | -7y+2=-19 | | 3(b-1)=15 | | 37x+8=11 | | 20=5(v+2)-7v | | (1/4)(x+12)-5=(2/3)x+7 | | -(5g+12)=18 | | 7=7(x+9) | | -2(3x+4)=4(x-1)+2x | | 8x+4=-10x–20 | | -t-1=-9+t | | x-²7x=5 | | -7(-3n–8)=6(6+3n)+5 |