If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-101.4x+623.7=0
a = 4; b = -101.4; c = +623.7;
Δ = b2-4ac
Δ = -101.42-4·4·623.7
Δ = 302.76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-101.4)-\sqrt{302.76}}{2*4}=\frac{101.4-\sqrt{302.76}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-101.4)+\sqrt{302.76}}{2*4}=\frac{101.4+\sqrt{302.76}}{8} $
| 32y+6(3y)=27 | | (5x-10)+50=9x-8 | | 4=36➗m | | -4(x=3)=24 | | x-16+95=180 | | -2x=3600 | | 2x^2=x^2÷3+15 | | 2x/5+5x/3=5x-12 | | 4x–10=-1 | | 48÷3=n | | 19-3=x | | 2x+(7-)²=0 | | 19-3=c | | 3a(2a+1)+2(a+4)=6a2+3a+2a+8 | | -50+4x+2x-10=180 | | 2x-30=6× | | 3(x-2)+4x)-3=4-(x-12) | | (5x)-(6)=27 | | -41(x-5)=8 | | y=30+8 | | 3x+(4x-1)+90=180 | | 70n=6(n-1)+4 | | 6x+4-2x+2=46 | | 6x+4-2x+2=46* | | 4x+8=12+10x | | 70n=6+(n-1)4 | | (-9+2x)+(x+3)=180 | | m=10/4(20)+17/10 | | -20-2x=-4x-4 | | -20+2x=-4x+4 | | 1/4(8t-8)=t+8/8 | | d=6+17.7 |