If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-15=0
a = 4; b = 8; c = -15;
Δ = b2-4ac
Δ = 82-4·4·(-15)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{19}}{2*4}=\frac{-8-4\sqrt{19}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{19}}{2*4}=\frac{-8+4\sqrt{19}}{8} $
| x(x+3)²+(x-1)²=45 | | 6(d−87)=72 | | 25+7v=95 | | 10(b+2)=80 | | 9+9h=81 | | 3(v+22)=90 | | 3n-3=n+1 | | x+65+30=180 | | 3^(3x)=333 | | −3−6r=-18 | | 3x+8(2x+6)=2(3+7x)-3 | | .247x+.239x=122.5 | | 2(x-2)+5(x+5)=4(x-8)+2(x-2) | | 20x+25x+5=1,115 | | p-10/4=2 | | (x+3)/2+3x=5(x-3)+(x+23)/5 | | x-0.09x=2.22-0.1x | | x/35=0.85 | | X+7y+1=0 | | x−42=2x−42 | | (2x+10)+(8x-4)=126 | | 2+9=45-4x | | x-180-x=50 | | l+5=0 | | 5.1=-x/7 | | -8x+22=-34 | | 3c=1+2c | | -9-6y=2-2y | | 2^8=2n | | X-25-6x=6/5 | | 7x-6x+4=4(x-1) | | 7x-4=4x+3 |