If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x-5=0
a = 4; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·4·(-5)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{129}}{2*4}=\frac{-7-\sqrt{129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{129}}{2*4}=\frac{-7+\sqrt{129}}{8} $
| 3(x+2)+3(2x+1)=99 | | 10) 3(2b-1)-7=6b-10 | | 7(e-1)-11=6+6e | | 3(4x+2)+2=-x+343(4x+2)+2=−x+34 | | 3x+4=4x=8 | | 2x^2-2×-7=5 | | 8n-70=-2-30 | | 2(3x+4)-2(2x-5)=2(4x+2)-2(x+1) | | |10-3x|=|x+7| | | 2(x+5)+4x=34 | | 4x+16=-2(-2x+8) | | 5(x+4)+5x=50 | | (x-4)(x-4)+7=128 | | 7n-35=12n | | 5(9n+2)=10 | | -2m+20=-12m-20 | | -12.5+3y=-8 | | -12x=-14.4 | | 2x+20=-3+5 | | 4x-10=132 | | h(11)=2+5 | | -0.71x+0.41x=9.3 | | 5x+6x-7=11x-3 | | 2(3x+6)+9=57 | | C(x)=X^2-4x+20 | | 2x+11x+13=60 | | 4(x-1/4)=12(x-1/6) | | 4x-10+2x+52=264 | | -20+5/6x=-210 | | g(5)=64(1/4)^5 | | g/2-7=10 | | 0=0.1x+0.4 |