If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-20=0
a = 4; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·4·(-20)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*4}=\frac{8}{8} =1 $
| 2x-14=3x+5 | | d/8-4=16 | | 0.7(x-2)=-3 | | x+3(2x-3)=12 | | 3x-10+7x+3x-5=180 | | -1/2g=-11/3 | | x2-4x-5=0 | | -0.58x+0.28x=8.1 | | t/7=14 | | -39x^2+76x-32=-32 | | -3b/11+8b/22=5/11 | | 2x-8=2x-8+17 | | 4x–5=1+3x; | | 12=a-4/5 | | 2x2+8x+6=0 | | 2x=3x-19 | | -5a–8=-53 | | 4(w+2)-w=2(w-1)+19 | | -5u2+7u+4=0 | | 3-2v=-13 | | y=2(4)-5 | | 3=12y-5(2y) | | 8c-56=24 | | 3(y+2)=7y-30 | | 3x+4(2x-5)=24 | | -3=12y-5(2y) | | 48-(8j)=16 | | -9=-c2–11 | | n+-5=9-2n | | 9b+63=81 | | (x)x12+15=(x)x5+218 | | n-5=9-2n |