If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+10x=31
We move all terms to the left:
4x^2+10x-(31)=0
a = 4; b = 10; c = -31;
Δ = b2-4ac
Δ = 102-4·4·(-31)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{149}}{2*4}=\frac{-10-2\sqrt{149}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{149}}{2*4}=\frac{-10+2\sqrt{149}}{8} $
| 5+p=49 | | 35m=525 | | 0.17*x=1 | | 2-x+7=5x-4 | | 1.8p=198 | | 3x-12=12+3x | | 11x+20=6x+60 | | x/8+20=80 | | c=0.75-c=7=2.80 | | x-12,38=9 | | 3(2y-4)-y=7 | | 6k-6=8k-22 | | x/2-1/x=1/12 | | 2(q+8)=2q+ | | h2–9h+20=0 | | 6x-21+21=180 | | 6x²+12x+12=0 | | 2(x-15)=25 | | 6z-4+7z=3-z | | 2(q+8)= | | 53+x=x+53 | | |2x-8|=6 | | 1x-1=-0.3x+17 | | 1x-1=-0.1x+17 | | 3/x+2/x=16 | | y+72=-76 | | 1,000,000+.80x=x | | 10.4x-55=-33 | | 14=(2x+5)^2-2 | | 5x+1|6=3x-13|7 | | 18x-44=13-38 | | 2x+-1=x+9= |