4x/3-(x-1)/2=(5/4)

Simple and best practice solution for 4x/3-(x-1)/2=(5/4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x/3-(x-1)/2=(5/4) equation:



4x/3-(x-1)/2=(5/4)
We move all terms to the left:
4x/3-(x-1)/2-((5/4))=0
We add all the numbers together, and all the variables
4x/3-(x-1)/2-((+5/4))=0
We calculate fractions
128x^2/()+(-x)/()+()/()=0
We add all the numbers together, and all the variables
128x^2/()+(-1x)/()+()/()=0
We add all the numbers together, and all the variables
128x^2/()+(-1x)/()+1=0
We multiply all the terms by the denominator
128x^2+(-1x)+1*()=0
We add all the numbers together, and all the variables
128x^2+(-1x)=0
We get rid of parentheses
128x^2-1x=0
a = 128; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·128·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*128}=\frac{0}{256} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*128}=\frac{2}{256} =1/128 $

See similar equations:

| 20=5-25x | | 23=x+3+3x | | -t/8=-7 | | -9(x+4)=-(x+36) | | 1=-6(-x/2-5)-(x+3) | | Z-10=8+4z | | 7|12y+3|-1=62 | | 3x-10=5(x-4 | | -10-9z=-10z | | 42=2(2x+28) | | 2/5-7/10x=1/2+3/5x | | 4x/3-(x-1/2)=(5/4) | | 42.62=8g+3.98 | | x*10^(-3x)=1000 | | -5t=-4t+3 | | 20=(10-x)2/5 | | 1=0.2x-0.6-23 | | −3a+7=34 | | x*10(^-3x)=1000 | | -2(6-4n)=2(3n-2)+2 | | u/4-2.3=-8.7 | | -10+8d=10d | | 2(y+9)-3(4y+2)=-8 | | 4x/3-(x-1)/2=(11/4) | | x*10^-3x=1000 | | x/2+1=2.4 | | -100x(x+2=0 | | 17.26=3g+3.73 | | 15x-45=9x-9 | | 944+9x=1180+9x | | 9x=29-20 | | 6x+3-8=1 |

Equations solver categories