If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+2=(4x-10)(3x-3)
We move all terms to the left:
4x+2-((4x-10)(3x-3))=0
We multiply parentheses ..
-((+12x^2-12x-30x+30))+4x+2=0
We calculate terms in parentheses: -((+12x^2-12x-30x+30)), so:We add all the numbers together, and all the variables
(+12x^2-12x-30x+30)
We get rid of parentheses
12x^2-12x-30x+30
We add all the numbers together, and all the variables
12x^2-42x+30
Back to the equation:
-(12x^2-42x+30)
4x-(12x^2-42x+30)+2=0
We get rid of parentheses
-12x^2+4x+42x-30+2=0
We add all the numbers together, and all the variables
-12x^2+46x-28=0
a = -12; b = 46; c = -28;
Δ = b2-4ac
Δ = 462-4·(-12)·(-28)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{193}}{2*-12}=\frac{-46-2\sqrt{193}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{193}}{2*-12}=\frac{-46+2\sqrt{193}}{-24} $
| −4−9x=23 | | 7x=-x-56 | | 6(m–1)=3(3m+5 | | -15=-6k-2+5 | | (6+x)+4=(12+x)-20 | | -1+7p=10p-10 | | 8(x-4)-5(2x-8)=40 | | 3(n+8)-n=20 | | 22−n=15. | | 5x+24=9x- | | 8j+3-j=7 | | -32=-4-2x+4 | | 6.29-1.7c=-2.5-7.47 | | 22−n=15 | | -9y+9=-2y-6-4y | | 4p-15=17-4p | | t−8=33 | | 4x-7+3x+19=180 | | 6.29-1.7=-2.5c-7.47 | | 4x+2=(3x-3)(4x-10) | | 3(u-13)-4=14 | | 6x+19=-2x+91 | | 9+2m=7=63 | | c+5=49 | | 0.3s=0.6=1.5 | | 3j-10=-7j | | 5-r=8-4r | | 4.7m=−32.9 | | 3(2x+2)+x+6=-10 | | 5(-3x-6)=10 | | 3x-4*7=5 | | X=57,y= |