4x+2=(3x-3)(4x-10)

Simple and best practice solution for 4x+2=(3x-3)(4x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x+2=(3x-3)(4x-10) equation:



4x+2=(3x-3)(4x-10)
We move all terms to the left:
4x+2-((3x-3)(4x-10))=0
We multiply parentheses ..
-((+12x^2-30x-12x+30))+4x+2=0
We calculate terms in parentheses: -((+12x^2-30x-12x+30)), so:
(+12x^2-30x-12x+30)
We get rid of parentheses
12x^2-30x-12x+30
We add all the numbers together, and all the variables
12x^2-42x+30
Back to the equation:
-(12x^2-42x+30)
We add all the numbers together, and all the variables
4x-(12x^2-42x+30)+2=0
We get rid of parentheses
-12x^2+4x+42x-30+2=0
We add all the numbers together, and all the variables
-12x^2+46x-28=0
a = -12; b = 46; c = -28;
Δ = b2-4ac
Δ = 462-4·(-12)·(-28)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{193}}{2*-12}=\frac{-46-2\sqrt{193}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{193}}{2*-12}=\frac{-46+2\sqrt{193}}{-24} $

See similar equations:

| 3(u-13)-4=14 | | 6x+19=-2x+91 | | 9+2m=7=63 | | c+5=49 | | 0.3s=0.6=1.5 | | 3j-10=-7j | | 5-r=8-4r | | 4.7m=−32.9 | | 3(2x+2)+x+6=-10 | | 5(-3x-6)=10 | | 3x-4*7=5 | | X=57,y= | | (a+6)(3a–7)=0 | | 21/6a=-4 | | 8(4–2x)+8x=6(2x–8) | | 20+16m=-14m-10 | | 4(2x+5)=3(2x+13) | | y+9=55 | | 2/3k=1 | | x-(2x)=-60 | | 5=9-a/2 | | 10-5x=15-10x | | 10-9n=-7n-10 | | 2(x+3)+6=4x-6 | | d-0.75d=500 | | (3x+6-80)/2=x+2 | | 20+16m=-14-10 | | 249=217-f | | 0.3m+2.1=0.3(m+7) | | r−15.8=24.6 | | 6y-7-10=3 | | 8/m+9=10/4m-7 |

Equations solver categories