If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-36=0
a = 49; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·49·(-36)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*49}=\frac{-84}{98} =-6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*49}=\frac{84}{98} =6/7 $
| 4(3z-7=65-3(4z-9 | | 17w+3=90 | | 3h+4=20 | | e/3=25 | | x^2-2x=-50 | | n/8+12=24 | | m-248=-16 | | 56-5x+62-8x=90 | | 0.57x=-16 | | x-0.6=-8 | | x-3.5=-8 | | 32+4x=5x+91 | | 6f+169=2f+133 | | -7x+61=180 | | ((x+3)(x+3))-x(x+2)=9+2x | | -5x+149=-7x+175 | | 13k+108=180 | | 26+29+x=180 | | 50+71+x=180 | | 6m+58+56=90 | | 49+60+x=180 | | 49+71+x=180 | | 6x+12=4x+2+50 | | 6x+12+4x+2+50=180 | | 2/3c-2=2-c | | 50+6x+12=180 | | 10x+6+4x+34=180 | | 10x+6+4x+34=810 | | 8x+19+10x-5=180 | | 7(2x2-3)=x | | 42+86+x=180 | | 3(2x+6)=5x-15 |