If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x+-16x^2=0
We add all the numbers together, and all the variables
-16x^2+40x=0
a = -16; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-16)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-16}=\frac{-80}{-32} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-16}=\frac{0}{-32} =0 $
| 5(x+8)=9x+5-4x-35 | | 8(5x-6)=42 | | +20=10x | | 6(11-2x)=7(-2-2x) | | 7-6u=-23 | | m/4+6=7 | | 5t+16=-14 | | 0.1n-1.5=0.4 | | X+1/2=x-4/10 | | 11=r+5÷2 | | 7x-2=173 | | 7x-2=73 | | 3x+6=5x-(4x+2) | | x+25=5x-27 | | -5(c-2)=20-5+-10 | | 5/b=8/15 | | 4x+3(x-2)=43 | | -3(x-4)+7=2(8-4x)-12 | | 26=2f-4f | | Y=3.75x+324 | | 4(x+2)+6x=27 | | -7(x-5)=-77 | | (y/2)-5=1 | | m+15=32 | | 3(y+2)-y=38 | | 8+7(4+2b)=106 | | 3(x-3)=2(x-6)+x | | 5z+2z=49 | | 31=7(x-2)+17 | | 40=-2(p+1) | | 7(x+3)=9x-5.4 | | 8z^2+54z+85=0 |