If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-29.59x+1.35=0
a = 4.9; b = -29.59; c = +1.35;
Δ = b2-4ac
Δ = -29.592-4·4.9·1.35
Δ = 849.1081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29.59)-\sqrt{849.1081}}{2*4.9}=\frac{29.59-\sqrt{849.1081}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29.59)+\sqrt{849.1081}}{2*4.9}=\frac{29.59+\sqrt{849.1081}}{9.8} $
| 4/5=t/2 | | 7*1=4*n | | x+30=(x-5)36 | | 4.9x2-29.59x+2=0 | | .85x=42 | | 2v/3=4/9 | | 3(2x+4)-7=3x-4(x+4) | | x-1=(x+1)8 | | 5x+18=31 | | X=3y=4 | | 7+8x-8=10-5x+15 | | 48n=44 | | -9z-10=-18z-16 | | 44n=48 | | 6(3x+7)=132 | | (4x-66)+(2x+36)=180 | | (y+1)2*3y=64 | | 12-1/8x=36 | | 10x^2-44x+0=0 | | 7v+v=56 | | 12y-100=15y-5 | | 7a+1=4a+10 | | (x+3)(x-0)=0 | | (x+3)(x-0=0 | | 44+n=48 | | 180(x-2)=165x | | 44-n=48 | | 180(x-2)=176x | | 4x+11=180,x | | 4.9x2-22.5x+8=0 | | 81+x=92 | | 3t−1=2 |