4(n+16)=4n(n+16)+5

Simple and best practice solution for 4(n+16)=4n(n+16)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(n+16)=4n(n+16)+5 equation:



4(n+16)=4n(n+16)+5
We move all terms to the left:
4(n+16)-(4n(n+16)+5)=0
We multiply parentheses
4n-(4n(n+16)+5)+64=0
We calculate terms in parentheses: -(4n(n+16)+5), so:
4n(n+16)+5
We multiply parentheses
4n^2+64n+5
Back to the equation:
-(4n^2+64n+5)
We get rid of parentheses
-4n^2+4n-64n-5+64=0
We add all the numbers together, and all the variables
-4n^2-60n+59=0
a = -4; b = -60; c = +59;
Δ = b2-4ac
Δ = -602-4·(-4)·59
Δ = 4544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4544}=\sqrt{64*71}=\sqrt{64}*\sqrt{71}=8\sqrt{71}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-8\sqrt{71}}{2*-4}=\frac{60-8\sqrt{71}}{-8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+8\sqrt{71}}{2*-4}=\frac{60+8\sqrt{71}}{-8} $

See similar equations:

| 12y+4y=26+2 | | 18z-14=14z-10 | | 15-5w=0 | | 2(m−12)=3 | | 3x-8-4x+4=10 | | 3x+1.5=2.5x+4.75x-4+4x | | 15b=-3 | | 12w−5=7 | | −1.7(−2x+6.6−4x)=15.3 | | 3x-8-4x=10 | | 7-2(a-2)=9+a | | -10x+3=5x-4 | | 17u-7=2u+8 | | p-14=60 | | -10x#=5x-4 | | 100+40+(2x)=180 | | C+22=2c+48=6c+7 | | 4x+7x=5.5 | | -2p−5=37 | | 2+.3x=-4 | | 20-15x=14x | | (x+3)(x^2-5x-24)=0 | | 6(-2x+8)=84 | | –5+2j=–7 | | s+109=180 | | 3w-8=2w-15 | | x-3=9x=35 | | 2x-5=2x(x-5) | | 8x+7+5x+14+10=180 | | -25=k−384 | | C+c*3=12 | | (x+14)+x=90 |

Equations solver categories