If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z(2z+11)=63
We move all terms to the left:
3z(2z+11)-(63)=0
We multiply parentheses
6z^2+33z-63=0
a = 6; b = 33; c = -63;
Δ = b2-4ac
Δ = 332-4·6·(-63)
Δ = 2601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2601}=51$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-51}{2*6}=\frac{-84}{12} =-7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+51}{2*6}=\frac{18}{12} =1+1/2 $
| 200+50x=150x | | 8^2x+6=32 | | 7y-2=-2y-29 | | 21=4n | | (3+x)-(2•2)+6=9 | | 21/x+7=7/6 | | 3+5n=5n+2-7 | | 6v+18=360 | | -2x2-16x-30=0 | | 3x+43=270 | | 17x-5=5+15 | | (7v-6)(2v-5)=0 | | y=1/2-2+4 | | n-3=n-7 | | 7x=8/x-6 | | Y=35+18x | | t(3+2)=0 | | (x/3)=x | | 15=2x+(-3) | | 4+5+10+2b=23 | | A+.08a=1296 | | 16x-33=14x-9 | | 4.9t2-39.2t-98=0 | | 34-5x=10 | | 2x(x-6)=90° | | p-(-1)=(-7^(2)) | | 8.74t+9=12.5t+12 | | 28/x=1.427 | | 15+u-22=9^(2) | | (4)/(5)b=12 | | −3(2x+1)3=−192 | | x2/5=34 |