If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-5=0.=1.2
a = 3; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·3·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*3}=\frac{0-2\sqrt{15}}{6} =-\frac{2\sqrt{15}}{6} =-\frac{\sqrt{15}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*3}=\frac{0+2\sqrt{15}}{6} =\frac{2\sqrt{15}}{6} =\frac{\sqrt{15}}{3} $
| 3x+7=-8+4x | | b-17=-28 | | q-9=-17 | | 30x/6=15 | | 1.05^n=5 | | k-14=-16 | | f-11=-23 | | 3-(7x-1)=3x-10(2-x) | | 38+b=-18 | | 27+g=-18 | | F(x)=(x+1)+(x)+(x-1) | | 18+q=-16 | | k+20=-16 | | p+17=-20 | | K+2p=-16 | | g+14=-15 | | 4(x+3)-5=3(2x-1)-(2x-4) | | 7x+76+6(7x-5)=8x−74 | | f+11=-23 | | F(x)=2(x-1)+3(x+1) | | c+6=-7 | | 2y2+5y=0,y=-2,-5 | | 5r+10=20W | | F(x)=(x)+(x-1) | | F(x)=x+2+1 | | F(x)=|x+2|+1 | | -1,5x²+22,5x=67. | | 12−8x=3(x+4) | | 2(x-2)-5=-7(-3x+1)-3x | | 6m-4=2 | | -3(x+1)=7x-8+4(2x+5) | | -2(4v-3)+7v=8+7(2v-1) |