If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-26x+32=0
a = 3; b = -26; c = +32;
Δ = b2-4ac
Δ = -262-4·3·32
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{73}}{2*3}=\frac{26-2\sqrt{73}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{73}}{2*3}=\frac{26+2\sqrt{73}}{6} $
| 18x+x=205 | | 4(x+2)+8x=16 | | 17x+8=11x+6 | | -1/2x-5/3=-7/12 | | -7(5+3x)=-30-7x | | 30m+500=7,700 | | 60+5x2=140 | | -3+2k=k-1 | | -4-12=8x+24 | | 3x+900=2x+1000 | | 3/4=3/8x-2 | | -95=x-7(8+2x) | | 11÷7=2x | | -6y=2y+4=14 | | 3x+3=1x+(-5) | | 4(5x-7)=10x2 | | 5(2x+10)+30=6x+104 | | 5+4x-7=4x-22x | | -3(14+5r)2r=-14(r+3) | | 4(3x+8)=8+16 | | 24x+56=53x+56 | | w+4/6=-8 | | 30x+96=24x+30 | | -3x-4=36 | | 4(n-2)-(3-6n)=9n | | 5x/5=20/5x=4 | | 120+2(10x+15)=310 | | 60x+30=750 | | 15+t=-2 | | -5x+10=7x+18 | | -2x-4=3x+2 | | 2x+12x=4x |