If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-14x+8=0
a = 3; b = -14; c = +8;
Δ = b2-4ac
Δ = -142-4·3·8
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-10}{2*3}=\frac{4}{6} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+10}{2*3}=\frac{24}{6} =4 $
| 7e-6=45.1 | | 3y-1/2=1-y/5 | | 3y-1/2=1-y/5 | | 4p=38 | | 0.5x/4=2 | | 9(a+7)=99 | | 6=-16t^2+46t+6 | | 20=9c-7 | | 9h+5=86h= | | 2x(+14)=3(+10) | | (5x+1)(5-4x)=0 | | 2x(+24)=3(+10) | | -5.5(d+2)=12.1 | | 7(x-3)=2+5x | | (12/27)^((x/12)+1=(23/30)^((x/12)+1) | | 2x+8-4=7+x | | Y-2z=5 | | 20=1/212h | | x+7=17/6-5x/6 | | 75-50=25+70x | | 9+2y-2=8y+16=5y | | 2y²+14y-14=0 | | (X-5)(x+2)=(x-7)(x-3)+4 | | (3x-5)+(7x-2)+(x)=180 | | −66=6(x−9 | | 7(3-4x+1)+6=5(x-6)+3(4-3x)+3 | | 27x-1/x^2=0 | | 20=13+4x+3x | | 6x+11=-33-5 | | 1-3x/3=8 | | 6x+7-3=15 | | 5(x+3)=2(x=6) |