If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9x+3=0
a = 3; b = 9; c = +3;
Δ = b2-4ac
Δ = 92-4·3·3
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{5}}{2*3}=\frac{-9-3\sqrt{5}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{5}}{2*3}=\frac{-9+3\sqrt{5}}{6} $
| 6x+11=-6 | | 3x-27=1x+3 | | 2.25x-4.50=1.75x-6.00 | | |1-1/5x|=3 | | 20v−15v=20 | | 13v-v+(-3v)-4v-(-6v)=11 | | 3/4y-6=y/8+4 | | -4x-1=-2-(5x+2) | | x–2x+3=3–x | | 1/3x-3=1/9x=3 | | 3(2x+6)=-47+41 | | (8x+1)+(9x+1)=(7x+3)+(8x+5) | | 3(x-3=3 | | 500=-250x+5000 | | 1⁄2x+13=20 | | 5(2x−8)=5(2x−8)= 20 | | 5p+8=38 | | 8=85-m | | 120+(6x-1)+(3x+12)=180 | | -38+10x=-4x-19 | | 5(2x−8)=5(2x−8)=20 | | 14.2f-25.2=3.8f+26.8 | | 4x-3+12=25 | | c-4=-5 | | 2(2x+4)=(2x+3)+(2x+4) | | p+18=6(p+3)−5p | | -9j+6=-7j-8 | | 4c-15c+(-3c)+11c=15 | | T=5+4.75s | | 9x-40-2x+10=-4x-28+8x | | −4+6.3x=2.1x+17 | | 2n+14=n(n+1) |