If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x=10
We move all terms to the left:
3x^2+7x-(10)=0
a = 3; b = 7; c = -10;
Δ = b2-4ac
Δ = 72-4·3·(-10)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*3}=\frac{-20}{6} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*3}=\frac{6}{6} =1 $
| s=2200 | | 6(x+4)=10x+4 | | -6(2x+7)=5(3x-2) | | y=-56 | | -3x-6x=4x-7 | | -6=n-11 | | 7(w+2)=-2(6w-5)+3w | | 0=30.1735-4.9t^2+11t | | 7(w+2)=-2(6w-5) | | 7(x+7)=9x+4 | | -4+3x=2x-4x | | 4(x-3)+12=28 | | (x-5)(2x-90)=360 | | 2+6x+50=180 | | 201=65-v | | 0=4.9t^2+6.1735-11t | | -1+9x=-5x | | 12=7/2(5x+2) | | -8=4n-6n-18 | | 6x+2+50=180 | | 2m+7=9.5 | | 6x^2+84x+22=0 | | −24=−2(x+4) | | 2(x-4)=4(2x+1)= | | 7/42/5x=28 | | -9=-(5-a) | | -9=-4-x | | -1x+1=2x | | (10x)+12=52 | | (x^2)/4=2 | | 10x=-10+11x | | x-7÷5=3 |