If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x=0
a = 3; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·3·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*3}=\frac{-10}{6} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*3}=\frac{0}{6} =0 $
| (6+z)/(10)=-2 | | 23.3*0.05=x | | 7x−2=26 | | 12x-43-10=83 | | (0.533*100)-30=x | | 2.8w+19.83=-16.5w+17.1w-17.57 | | ((24/45)*100)=x | | (n+3)/(8)=-4 | | 200-200x+x^2=0 | | 8•x=10 | | -18.01+0.4j=-3.52+2.5j | | -2(8-11k)=4(k-4)+7k | | 3x-5(x-4)=-8+2x+20 | | 9.4r=8.8r-0.18 | | 3x=5/6x+13 | | 13^4x+3=17^x+1 | | -16t^2+31t-2=0 | | 0=t^2/24+0.25t-4.6 | | (4a+11=)+(a+16=) | | 11.2p-14.8p+14.53=-4.5p-2.84 | | m-3m(-3)=10/3 | | 2.07025=e+-17 | | 2(5/2)+2(x)=5/2×x | | 15(x)=15-13(x)^2 | | −2x−5=2−4x−(x−1) | | 64=10x-2x-16 | | 4^(x-5)=16 | | 15-(w)/(4)=28 | | 4s+9s-3s=10 | | 20(x)=20-13x^2 | | -2.44-s=15.2+0.4s | | -(1)/(2)x-7=-11 |