If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+1=7x^2-1
We move all terms to the left:
3x^2+1-(7x^2-1)=0
We get rid of parentheses
3x^2-7x^2+1+1=0
We add all the numbers together, and all the variables
-4x^2+2=0
a = -4; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-4)·2
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-4}=\frac{0-4\sqrt{2}}{-8} =-\frac{4\sqrt{2}}{-8} =-\frac{\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-4}=\frac{0+4\sqrt{2}}{-8} =\frac{4\sqrt{2}}{-8} =\frac{\sqrt{2}}{-2} $
| F(x)=x2+3x+1 | | 32d-6+2=2 | | -15.1=x/6+4.1 | | 4-2x/6=5 | | -6(4x-2)=12 | | 65=-5v+14v+2 | | 1-7x=-4(1+3x)+3 | | -1+4v=35 | | 8p-9=-2p+6 | | F(x)=x2+4x+2 | | 7(3x-5)=-203 | | w+7/5=10 | | 217=105-u | | 24-1/2x=-8 | | -4+z−4z=2z−9 | | 7(3x-5)=-204 | | -2=x-19.2/5.4 | | 3b+10=-2+6b | | -3+7=5-(11p+7 | | 6=7y-4y-6 | | -6r=-8-2r | | 2+15x+10=5(3x+2) | | 3+x/2=1/2 | | 25×g=75 | | 2(3x-4)=10x+4 | | -6r=-8−2r | | 3(x+3)-4=-16 | | -7/3w=21 | | 2x+5=105-2x | | (5/6)x+17=(1/6)x-5 | | 3x-25=116 | | -3p+8=5-(8p+3 |