If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x=4
We move all terms to the left:
3x^2+10x-(4)=0
a = 3; b = 10; c = -4;
Δ = b2-4ac
Δ = 102-4·3·(-4)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{37}}{2*3}=\frac{-10-2\sqrt{37}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{37}}{2*3}=\frac{-10+2\sqrt{37}}{6} $
| 37-120x+432=10x+90-138 | | -34=x/4 | | 24-3f=6 | | -12=3-2-2k-3k | | 2(3-2c)=300 | | (2x+3)(4x+5)(6x+7)=0 | | 35x-22+x-90+25x=120x+118 | | 1.5x+x=5130 | | -10s=-133 | | 127=(11+2x) | | 5(7n+5)-3=197 | | -10s-30=-103 | | -10s+30=-103 | | 12x=336 | | x=(x-1000)/0.15 | | 4•x+9=37 | | 4(5+c)=3(1+c) | | 4·(5–2x)=-12 | | 25=½x+15 | | 25=½x+15 | | X+40+2/3x=90 | | 5(x-1)+16(2x+3)=(2x-7)-× | | -3x+12-10x=9x-4x-12 | | X+40+2/3x=180 | | 11x+4x-1=5x-30 | | 5/m=11 | | 3(2x+1)5=(2x-5) | | 3(2x+1)5=(2x-5 | | 8x+16=12x+36-6x | | c=25.12 | | 1/8(64r+32)=1/21(16r-8) | | -5v+9v=44 |