3x/1x+24=1/x

Simple and best practice solution for 3x/1x+24=1/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x/1x+24=1/x equation:



3x/1x+24=1/x
We move all terms to the left:
3x/1x+24-(1/x)=0
Domain of the equation: 1x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x/1x-(+1/x)+24=0
We get rid of parentheses
3x/1x-1/x+24=0
We calculate fractions
3x^2/x^2+(-x)/x^2+24=0
We add all the numbers together, and all the variables
3x^2/x^2+(-1x)/x^2+24=0
We multiply all the terms by the denominator
3x^2+(-1x)+24*x^2=0
We add all the numbers together, and all the variables
27x^2+(-1x)=0
We get rid of parentheses
27x^2-1x=0
a = 27; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·27·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*27}=\frac{0}{54} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*27}=\frac{2}{54} =1/27 $

See similar equations:

| -4x-2÷3=6 | | 5x+12=9+13 | | 8x-1+64+71=180 | | 2x-1=3x-7=60 | | 2t^2-6t+3=t^2+4t | | 2x-1=3x-1=60 | | 15x–6=3x+18 | | (2x)^2/(0.79-x)(0.21-x)=1x10^-5 | | Y=x+1.754x-2=4 | | -37=8h-5 | | a-3+2a=-1+3a+4 | | X-42=60x=102 | | 2x-1/2=(10-4x) | | –v+3=1 | | 12x-9+17x+3=96 | | .6x=75 | | -0.5n=3.6 | | 2(y-2)=y-5 | | 3m(m-2)=5 | | -4=-2-2x | | 3x+7=10×+17 | | .07=15.8/x | | a+16/5=-2 | | -3k=34 | | 4m-m=18+2m | | 4^2m=16 | | 3x+2.2=14.2 | | 5x+1=4x-5+14 | | 6x-8=21 | | 3x25=7 | | 2x(25/3)=7 | | 2x+x+2x=1180 |

Equations solver categories