If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-8w+4=0
a = 3; b = -8; c = +4;
Δ = b2-4ac
Δ = -82-4·3·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4}{2*3}=\frac{4}{6} =2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4}{2*3}=\frac{12}{6} =2 $
| -75=-3(5+4m) | | 13=w/2-14 | | 2^2x+5=3^x-43 | | X/a+6=13 | | 6πh=18π | | 4-2k=5(8+k)-8 | | 5(9−2y)+4=9 | | 5(9−2y)+4y=9 | | -3x+4(2x+2)=2(3x-3)+11 | | 9x72=7x | | 2(4u+2)=24 | | 15m^2+14m-8=0 | | 1+3(-5z-3)=-5(5z+)+3 | | 0.22(x+6)=0.2x+2.9 | | -18-(3-4x)=-41 | | 2(1+5x)=52 | | 8/36=2n | | X^-6x+9=0 | | 28-9x+13x=24 | | 49÷k=7 | | 7a(3a-5)=13 | | (2/3)m+(5/4)m-m=(11/12)m | | 6z−7/5z=3 | | 108=2w+2(3w+4) | | 4(5x-1)-11x=-13 | | 49➗k=7 | | 8x+7=3(x-2)-9 | | 4(3k-3)=-72 | | 5(9-2y)+4=9 | | 4x^2−8x+4=1 | | 4x2−8x+4=1 | | 36=5d |