If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+6m+1=0
a = 3; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·3·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*3}=\frac{-6-2\sqrt{6}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*3}=\frac{-6+2\sqrt{6}}{6} $
| -4y+10+2y=y-5 | | 4h-100=0 | | 0.30(x+70)+1.50x=102 | | 5h+5h=90 | | 7u-6u=5+29 | | 9(x-15)=12 | | 7(6x-21)=147 | | 0.5x-6=0.25x+2 | | 5-y-10=2 | | 6(12x+17)=750 | | 2p-30+4p=30-5p+10 | | 7z=15-6(2-4) | | 2/5x-18/2=-4x | | 8(6x+16)=560 | | -12x+18-5x=12-11x | | -t=9(t- | | 8(10x-8)=656 | | 34/5x=1 | | 6(11x-23)=258 | | 1/2x+-4=5 | | 6(y+20)=16 | | 2(x+6)=2(6+(1/3)x) | | 2^(4x-2)=22 | | 2eǯ+3=13 | | 5^3x=84 | | 2e+3=13 | | -3x+17=7 | | 3c-12=180-c | | -3x=17=7 | | 19(2)+14=v | | P=3.50b-84 | | 5x+1+4x+17=180 |