If it's not what You are looking for type in the equation solver your own equation and let us solve it.
369=x2
We move all terms to the left:
369-(x2)=0
We add all the numbers together, and all the variables
-1x^2+369=0
a = -1; b = 0; c = +369;
Δ = b2-4ac
Δ = 02-4·(-1)·369
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{41}}{2*-1}=\frac{0-6\sqrt{41}}{-2} =-\frac{6\sqrt{41}}{-2} =-\frac{3\sqrt{41}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{41}}{2*-1}=\frac{0+6\sqrt{41}}{-2} =\frac{6\sqrt{41}}{-2} =\frac{3\sqrt{41}}{-1} $
| 4x-5/5+4=11 | | 9+2y=5y-3-y | | 9=6x+20 | | (3x)+(x-17)+(2x-61)=360 | | 0.2*x=0.8 | | x+6/6=1 | | -6x²+12x=0 | | -x²-12x=0 | | 34=25+3y | | 142+5x+12+(180-2x+4)=360 | | 4x+19=-2x-17 | | (180-2x+4)=360 | | 42=7x(+5) | | 2p+8+5p=53 | | 4b+1=–19 | | 2n^2-2n-90=0 | | b-18=105 | | 2(3y+3)-4(5y-3)=y(y-3)-y(y+5) | | 0x0=x | | 15=32-a | | 9(x—9)=63 | | 2x+3x+5x=1 | | 3x−5+3x=244 | | 5x+3x+3x=3 | | 4500-60v=50(100+v) | | 6x+12=x+9 | | 5l+7=-43 | | -2x+0=x-11 | | 8x+29=3-5x | | 13+14x=33+9x | | x(x+3)=340 | | (2x+5)/3=(x-7)/2 |